Second Order Superintegrable Systems in Three Dimensions
نویسنده
چکیده
A classical (or quantum) superintegrable system on an n-dimensional Riemannian manifold is an integrable Hamiltonian system with potential that admits 2n− 1 functionally independent constants of the motion that are polynomial in the momenta, the maximum number possible. If these constants of the motion are all quadratic, the system is second order superintegrable. Such systems have remarkable properties. Typical properties are that 1) they are integrable in multiple ways and comparison of ways of integration leads to new facts about the systems, 2) they are multiseparable, 3) the second order symmetries generate a closed quadratic algebra and in the quantum case the representation theory of the quadratic algebra yields important facts about the spectral resolution of the Schrödinger operator and the other symmetry operators, and 4) there are deep connections with expansion formulas relating classes of special functions and with the theory of Exact and Quasi-exactly Solvable systems. For n = 2 the author, E.G. Kalnins and J. Kress, have worked out the structure of these systems and classified all of the possible spaces and potentials. Here I discuss our recent work and announce new results for the much more difficult case n = 3. We consider classical superintegrable systems with nondegenerate potentials in three dimensions and on a conformally flat real or complex space. We show that there exists a standard structure for such systems, based on the algebra of 3× 3 symmetric matrices, and that the quadratic algebra always closes at order 6. We describe the Stäckel transformation, an invertible conformal mapping between superintegrable structures on distinct spaces, and give evidence indicating that all our superintegrable systems are Stäckel transforms of systems on complex Euclidean space or the complex 3-sphere. We also indicate how to extend the classical 2D and 3D superintegrability theory to include the operator (quantum) case.
منابع مشابه
ELEMENTARY PARTICLES AND FIELDS Theory Models of Quadratic Quantum Algebras and Their Relation to Classical Superintegrable Systems
—We show how to construct realizations (models) of quadratic algebras for 2D second order superintegrable systems in terms of differential or difference operators in one variable. We demonstrate how various models of the quantum algebras arise naturally from models of the Poisson algebras for the corresponding classical superintegrable system. These techniques extend to quadratic algebras relat...
متن کاملStructure Theory for Extended Kepler–coulomb 3d Quantum Superintegrable Systems
A quantum superintegrable system is an integrable n-dimensional Hamiltonian system with potential: H = ∆n + V that admits 2n − 1 algebraically independent partial differential operators commuting with the Hamiltonian, the maximum number possible. The system is of order ` if the maximum order of the symmetry operators, other than H, is `. Typically, the algebra generated by the symmetry operator...
متن کاملWilson polynomials/functions and intertwining operators for the generic quantum superintegrable system on the 2-sphere
It has been known since 2007 that the Wilson and Racah polynomials can be characterized as basis functions for irreducible representations of the quadratic symmetry algebra of the quantum superintegrable system on the 2-sphere, HΨ = EΨ, with generic 3parameter potential. Clearly, the polynomials are expansion coefficients for one eigenbasis of a symmetry operator L1 of H in terms of an eigenbas...
متن کاملReduction of superintegrable systems: the anisotropic harmonic oscillator.
We introduce a 2N-parametric family of maximally superintegrable systems in N dimensions, obtained as a reduction of an anisotropic harmonic oscillator in a 2N-dimensional configuration space. These systems possess closed bounded orbits and integrals of motion which are polynomial in the momenta. They generalize known examples of superintegrable models in the Euclidean plane.
متن کاملSuperintegrable systems with spin in two- and three-dimensional Euclidean spaces
The concept of superintegrability in quantum mechanics is extended to the case of a particle with spin s = 1/2 interacting with one of spin s = 0. Non-trivial superintegrable systems with 8and 9-dimensional Lie algebras of first-order integrals of motion are constructed in twoand three-dimensional spaces, respectively.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005